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In order to support our earlier experimental investigation of extraordinary rays’, behavior in uniaxial
crystals [Zhongxing Shao and Chen Yi, Appl. Opt. 33, 1209 (1994)], as well as to determine the indices of
refraction for the extraordinary waves at arbitrary incidence and in arbitrary orientation of the optical
axis, and to compare with our experimental results, the ellipsoidal equation depicting double refraction
propagation is solved with the expressions given in terms of the easily measured parameters: incident
angle 6, rotational angle ® of the crystal, and the inclined angle 7 of the axes. Based on the solutions,
the refractive angle rp of the ray (or the Poynting vector) and the angle B, between the ray and the opti-
cal axis, as well as the refractive angle r,, of the wave normal of the extraordinary wave and the angle 3,
between the normal and the axis are given. The results of the indices of refraction for the extraordinary
waves are practically presented by applying the derived angles combined with the equation [A. Yariv,
Quantum Electronics, 2nd ed. (Wiley, New York, 1975)]:

1/n2(B,)=cos*(B,)/n%+sinXB,)/n2 .

As an example of application, the indices of calcite and quartz are calculated using some angular param-
eters. To clarify the divergence [M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, New
York, 1975); F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York,
1976), p. 508], regarding the index and by analogy with Snell’s law, the ratio n.(r,)=sin(8)/sin(r,) is
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also discussed.

PACS number(s): 42.25.Bs

I. INTRODUCTION

The extraordinary rays in double refraction crystals are
a long-recognized optical phenomenon. Almost all opti-
cal textbooks have mentioned it, and some recent articles
have discussed the tracing of the ray [1-7] as well, but as
far as we know, it has not been described satisfactorily.
Consequently, the indices of refraction for the extraordi-
nary waves have not yet been established unequivocally.
Although we have had the familiar formula

1/nXB,)=cos*(B,)/ni+sin*(B,)/n? (1)

to calculate theoretically the index n,(B, ), where n, and
n, are the principal indices of the ordinary and the ex-
traordinary waves, respectively, the problem is how to
practically define the angle 3, between the wave normal
of the extraordinary wave and the optical axis with
measurable quantities. The expression

cosf3,, =cos®P cosd (2)

has been frequently used [8], where @ is the rotation an-
gle of the optical axis (or the crystal) away from the in-
cident plane (while ® =0, the axis is in the plane). Unfor-
tunately, Eq. (2) is valid only for crystals with optical
axes parallel to the surface (CAPS). Even then, it is con-
strained by the limitations of incidence at the Brewster
angle and the wave normal must be assumed to stay in
the incident plane, whatever ® is. In addition, the ambi-
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. guous expression, sin(8) /sin(r,)=n,, where r, is the re-

fractive angle of the wave normal, was employed in the
derivation of Eq. (2). As we pointed out in Ref. [1] the
wave normal does not stay in the plane unless the axis is
in the plane; the expression is not correct except when
the axis is vertical to the plane. Equation (1) is neverthe-
less very useful in some theoretical analyses in crystal and
nonlinear optics for assigning a preliminary angle 3,,.

Our earlier experimental studies on the extraordinary
rays’ behavior [1] revealed the following. (i) While the
crystal with optical axes inclined to the surfaces (CAIS) is
turned around the normal, the ray always rotates around
the ordinary ray. When the crystal is turned to 7, the ray
rotates to 7. But the rotation is not in step with the turn-
ing. For the CAPS the ray rotates up to 7 while the crys-
tal is only twisted to 7 /2. (ii) The traces of the ray on the
emerging surface in the CAIS, surprisingly, are a series of
curves that resemble the Pascal worms at different in-
cident angles. In CAPS, the traces degenerate to a series
of ellipses. (iii) For CAPS, Snell’s law is tenable only in
the case where the axes are perpendicular to the incident
plane.

Based on these discoveries, we have solved the ellip-
soidal equation depicting the ray’s propagation and deter-
mined three-dimensional coordinates that prove useful
for tracing the extraordinary ray. Then the refractive an-
gle of the ray (which is specifically the angle between the
ray and the normal of the crystal and the angle between
the ray and the optical axis), the refractive angle of the
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wave normal, and the angle between the wave normal and
the axis are obtained in terms of the easily measurable an-
gular parameters 9, ®, and 7. Fitting the angle between
the wave normal and axis to Eq. (1), the indices for the
extraordinary waves can be determined in practical ex-
periments.

II. THE COORDINATES
OF THE EXTRAORDINARY RAY

A movable rectangular system OX'Y'Z’ is chosen to
aid in the analysis of a uniaxial crystal in arbitrary orien-
tation of the optical axis. The OY’ axis is in the same
direction as the axis OA (see Fig. 1). The ellipsoidal
equation in the system can be written as

n2X"?+ndY?+n2z%=1. 3)

After rotating the OX'Y'Z’ system in such a way that
the OY’ axis is first turned at an angle n around the OX’
axis, then at angle ® around the OZ’ axis, the system
OXYZ is set in the same way as the original orientation of
the OX'Y'Z’ used to observe the rays’ behavior. The
OXY plane is on the front surface and the OZ axis coin-
cides with the normal of the crystal. Equation (3) can be
rewritten, in the system being observed, as

F,X*+F,Y*+BZ*+F, XY +F, YZ+F,ZX=1, ()
with

F.=nlcos’®+ A sin’® ,

F,=nlsin’®+ A4 cos’® ,

A=n}cos’n+nlsin’y ,

B =n}sin’n+n2cos’y ,

F,=(n}—n})sin(2¢)cos’y ,

F,,=(n}—n})cos ®sin(27) ,

F,,=(n}—n2)sin ®sin(27) .

All the factors in Eq. (4) are in terms of the angular pa-
rameters 77 and ® only. But, generally, 7 is fixed once the
crystals are cut for use as an optical component. Hence,
our interest in the index for the extraordinary wave
focuses on its relation to ® in the foregoing analysis.

A beam making an arbitrary angle 6 is incident on the
crystal. It is divided into the ordinary and the extraordi-
nary rays, OE, and OE,, respectively, as it enters the
crystal. The point P(X,,Y,Z,) observed on the extraor-
dinary ray satisfies Eq. (4),

F.X{+F,Y{+BZ}+F, XY, +F,Y,Z,+F, Z X =1.
5

On the other hand, when considering point P’ to be of
equal optical path to P, we find that the distance from O
to P’ d (OP')=ct/sinf. For the sake of convenience, tak-
ing the time ¢ =1/c [c denotes the light velocity; actual-
ly, it is under this assumption that Eq. (3) is obtained.
Note that the incident plane is the OYZ plane (refer to
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FIG. 1. A movable rectangular system OX'Y’Z’ is rotated in
such a way that the OY”’ axis is turned an angle 1 around the
OX' axis first, then angle ¢ around the OZ' axis. The station-
ary system OXYZ is set as the original orientation, as the
OX'Y'Z’' system used to be for observing the extraordinary
ray’s behavior. P’ is the point where the optic path is equal to
the point P being observed. d(OP’)=ct/sinf (¢ denotes the
time, c the light velocity).

Fig. 1 or 2)], the coordinates of P’ should be
(0,1/5in6,0). Hence, the tangent equation going through
points P and P’ is found to be

F,Y,+F,X,/2—F,,Z, /2=sin0

or
Y, =(2sin6—F, X, +F,Z,)/(2F,) . (6)
Substituting Eq. (6) into (5), we have
X,=(b+V'b2—4ac)/(2a) , ¥
where
b=[Fy—FyF,, /(2F)1Z, ,

a =F,—F} /(4F,) ,
¢ =[B—F;,/(4F,)1Z3 +sin*(0) /F,—1 .

In order to find Z,, X, in Eq. (5) must be zero. (Mak-
ing Z equal to zero apparently does not make sense, be-
cause it means the light would not have entered the crys-
tal. Alternatively, if ¥, =0, it would confine the case to
normal incidence.) Then Egs. (5) and (6) simplify to

F,Yi1+BZ}+F, Y,Z, =1 (8)
or
[Z,+F,,Y,/(2B)*/(1/VB )
+¥3/[1/V/F,—F% /(4B)]*=1
and
Y,=(2sin0—F,,Z,)/(2F,) . )

Evidently, Eq. (8) is an ellipselike equation describing the
intersecting curve between the ellipsoid and the OYZ
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plane. One of its axes 1/V'B, does not relate to ®, but
the other one does. Anyway, substituting Eq. (9) into (8),
we obtained

Z}=4(F,—sin’0)/(4BF,—F]) . (10)

Taking into account Eq. (10), Z? should attain one of
its extreme values, as F, yzz becomes maximum at =0:

Zi=(A —sin%0)/(n3n?) .

On the other hand, if Fylz becomes zero at ®=1/2, then
Z f should change to another extreme value,
ZZ

ke

= A(n2—sin%@)/(n3n}) .

The two extreme values of Z? are only related to the an-
gular variables 0 and 7.

Next we are going to determine the varying rule of Z,
for changing ®. To accomplish this, it is important to
note the factor F, with regard to the Y axis (so that it re-
lates to the optical axis), which aids in coordinate
transfer. The fact can be rewritten as

F,=A4—(A4 —nl)sin’® . (1

For simplicity, by making =0 (which leads to 4 =n3),
Eq. (11) is simplified to

—p2
F,=ng

2
(n()

—n2)sin’® . (11"

If the coordinate axes, X, Y, Z, are changed to the
principal indices, i.e., Y =ny, X =Z =n,, then the ellip-
soidal equation can be regarded as the index ellipsoid.
So, Eq. (11') proves that the indices in the CAPS, owing
to the change of @, vary from the ordinary ray’s princi-
pal index (when ®=0) to that of the extraordinary wave
(when ®=1/2). The rule for varying between the two
extreme values (the principal indices) follows the
sinusoidal (sin?®) pattern. The increment of the varia-
tion is (n3 —n2)sin’®. Comparing Egs. (11) and (11'), we
see that the variation rule for the CAIS is the same as
that for CAPS, except that the term A4 should be replaced
with n2. Returning to the matter of rays propagation,
similarly to the index, Z % varies between the two extreme
values (Z§and Z2 ,):

Zi=Z3—(Z3—2Z2 ,)sin’® .

This means that while the optical axis is in the incident
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J/ FIG. 2. Diagram showing the rotation of
7 the extraordinary ray (the Poynting vector)

/; .
E.Y P around the ordinary ray and the wave normal
J /, e of the extraordinary wave around the extraor-
M~ E, dinary ray while the optical axis is rotated at
SW an angle ®. OP denotes the Poynting vector.
7 OW, which is separated by a small angle a

from OP, represents the wave normal. The
coordinates of point P are (X, Y,, Z,). Bp is
the angle between the extraordinary ray and
the axis. [, indicates the angle between the
wave normal and the axis. rp and r, are the
refractive angle of the ray and the wave nor-
mal, respectively.

plane, Z? becomes Z} and the observation point P is in
the plane OXZ (X=0). Once the axis is rotated away
from the plane, Z % will decrease by the increment
(Z3—2Z2 ,)sin*®. When the axis is again perpendicular
to the plane, Z? will attain the other extreme ZZ2 ,. At
the same time, X| no longer equals zero until the axis re-
turns to the plane. Point P will travel around the rim of
the ellipsoid.

So far, all three coordinates needed to describe the ex-
traordinary ray’s behavior are solved in terms of the easi-
ly measured angular parameters 8, ®,  and the known
principal indices n, and n,.

III. THE ANGLES rp, Bp, 7., B, AND THE INDICES

Having found the coordinates describing the extraordi-
nary rays, the refractive angle of the extraordinary ray,
rp, and the angle between the ray and the optical axis, 3p,
as well as the refractive angle of the wave normal, 7, and
the angle between the normal and the axis, 3, can be
defined with the coordinates and the angles 6, P, 7.

When &=0, we know that the optical axis, the ex-
traordinary ray, and the wave normal to the extraordi-
nary wave are coplanar and in the incident (OXY) plane.
Note that the wave normal should lie to the right of the
extraordinary ray in order to conform to the indices of
refraction: at any incidence and in any orientation of the
optical axis, they are confined within the principal indices
ngy and n,.

When the optical axis O 4 rotates at an angle ® around
the OZ axis away from the OYZ plane, the extraordinary
ray rotates to OP. To keep the ray, the wave normal, the
electrical vector, and the displacement vector coplanar as
well as perpendicular to the magnetic vector (or the mag-
netic induction), according to Refs. [4] and [9], the wave
normal OW must rotate around the ray in the same direc-
tion as O A’s rotation and at the same angle as P to fol-
low the rotation of the electrical vector of the ray (see
Fig. 2). Generally, the wave normal is separated a small
angle (several degrees) a from the ray. Because of the
double refraction angle a, the extraordinary wave normal
is confined to a single side (which side depends on wheth-
er the crystal is positive or negative) as compared to the
ordinary ray (wave), although the extraordinary ray ro-
tates around the ordinary ray while the crystal is being
turned. The angle a, according to Ref. [10], equals
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tana=(n3/2)(1/n2—1/n3)sin(28,,) .

Taking into account the coordinate plane of point P,
OpXpYp, which is parallel to and has a separate Z, from
the OXY plane, we can easily determine the refractive an-
gle of the extraordinary ray and the extraordinary wave
normal, respectively,

cos(rp)=2Z,/d(OP) , (12)
with

[d(OP)*=X1+Y}+Z},
and

cos(r,)=Z,/d (OW) , (13)

with
OW=(X2+Y2+22)"?,

where X, Y,,, Z,, are the coordinates of the point W and
X,=X,—d(PW)sin® ,
Y, =Y, +d(PW)cos® ,
zZ,=Z, .

(14)

d (PW) in Egs. (14) is a function of a and is solved in the
Appendix. (Note that d(OW) should be shorter than
d (OP) because the phase velocity is the projection of the
ray velocity on the direction of the wave normal, so that
point W should not be in the OpXpY, plane. Here, for
convenience, we extend the normal so that it intersects
the plane, since the extension does not affect the angles.
Considering triangle OPA’ (the plane OpXpY, inter-
sects the optical axis at point 4'), we find the angle [Bp:
cosBp=[d*(OP)+d*(0A4’)
—dXPA")]/2d (OP)d(0A'") . (15)

Applying the coordinates of point P and Eq. (12), and
with proper mathematical operations, Eq. (15) can be
rewritten as
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cosfBp =sin(rp)cosn cos(®+y p)+cos(rp)sinyg , (16)

with
tan(yp)=X,/Y, .

In the same way, the angle between the wave normal
and the axis, 3,,, can be determined in triangle O 4'W:

cosB, =[dHOW)+d*04")
—dXA'W)]/2d(OW)d(0A’") . (17

All the terms on the right-hand of Eq. (17) are solved in
the Appendix. With the help of Egs. (13) and (14), we
can also write Eq. (17) in the form of angular variables:

cosf3,, =sin(r,, )cosn cos(P®+y,, ) +cos(r, )siny , (18)

with
tan(y,,)=X,/Y, .

Equations (16) and (18) do not have the problems in-
curred in Eq. (2) because they do not use the ambiguous
expression sin(8) /sin(r,,)=n, and also because of the as-
sumption that the wave normal must be in the incident
plane no matter what the positions of the optical axis is.
Hence, they are more general than Eq. (2). In fact, Egs.
(16) and (18) could be simplified to Eq. (2) if the axis were
parallel to the surface and perpendicular to the incident
plane, y=X,/Y ;=0 (X, =0 in this case), so that y'=0.
And note that if 6 is the Brewster angle, sin(rp) or
sin(r,, ) can be replaced with cos6@ by using the ambiguous
expression sin(0) /sin(r, )=n,.

Substituting Eq. (18), at last, into Eq. (1), the indices
for the extraordinary wave can be determined at any in-
cidence and in arbitrary orientation of the optical axis.

As concrete examples of applying the angle 3, the in-
dices of calcite and quartz are calculated and listed in
Table I. The parameters used in the calculations are
17=45.93° for calcite (natural cleavage), 45° for quartz,
and n,=1.65836, n,=1.48641 for calcite, n,=1.54425,
n,=1.55336 for quartz. For the sake of showing the
agreement between the equations derived here and the ex-

TABLE 1. The indices of refraction for the extraordinary waves, n.(f3,) for calcite and quartz, and
the sine ratio n,(r,) for calcite only. The parameters applied in the calculations are 7=45.93° for cal-
cite (natural cleavage) and 45° for quartz. The principal indices n,=1.658 36, n, =1.486 41 for calcite,

no=1.54425, n,=1.553 36 for quartz.

ne(Bw) ne(rw)
P 0=—m/6 0=1m/4 0=m/3 60=57/12 6=m/3
calcite quartz calcite quartz calcite quartz calcite quartz calcite
0 1.62099 1.54594 1.63847 1.54506 1.64913 1.54456 1.65412 1.54435 1.64694
m/8 1.61552 1.54624 1.62986 1.54549 1.63766 1.54510 1.64054 1.54496 1.56470
w/5 1.56238 1.54713 1.57248 154672 1.60873 1.54659 1.60749 1.54655 1.47251
37/8 1.58090 1.54823 1.57852 1.54818 1.57340 1.54839 1.56852 1.54860 1.43317
7/2 1.56031 1.54925 1.55043 154972 154067 1.55019 1.53361 1.55054 1.43459
Sm/8 1.53923 1.55023 1.52379 1.55099 1.51182 1.55160 1.50460 1.55199 1.46184
37/8 1.52642 1.55095 150916 1.55185 1.49784 1.55247 149218 155281 1.48778
7m/8 1.52065 1.55137 1.50319 1.55231 1.49291 1.55289 1.48858 1.55315 1.50699
T 1.51913 1.55150 1.50171 1.55245 1.49180 1.55300 1.48790 1.55324 1.51476
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TABLE II. Comparison between calculation and experiment
of the refractive angles (in degrees) of the extraordinary ray, rp,
in calcite.

0=1/6 0=1m/4 6=m/3 0=57/12
(] calc. expt. calc. expt. calc. expt. calc. expt.
0 12.70 13.01 21.46 21.42 28.77 28.60 33.73 33.78
w/8 13.83 13.23 22.59 23.03 29.93 29.77 3490 35.33
7/4 16.43 14.35 2523 26.15 32.62 32.84 37.63 38.17
37/8 19.21 17.03 28.05 28.21 3544 35.85 4043 40.77
m/2 2142 19.49 30.15 30.05 37.39 37.66 42.26 42.22
S7/8 23.13 23.00 31.60 31.04 38.37 38.37 42.84 42.53
8m/4 23.83 23.65 31.78 31.22 38.25 38.56 4249 42.01
Tm/8 23.96 2397 31.59 31.14 37.76 3796 41.86 41.72
7 2394 24.12 3146 31.26 37.52 37.49 41.55 41.50

periments in Ref. [1], the refractive angles of the ray for
calcite are listed in Table II.

IV. CONCLUSION AND DISCUSSION

The ellipsoidal equation depicting double refraction
propagation is solved by setting up the coordinate equa-
tions describing the extraordinary ray’s behavior with the
easily measured angular parameters. Based on the solu-
tions, the equations with respect to the refractive angle of
the ray, rp, and the angle Bp between the ray (or the
Poynting vector) and the optical axis, as well as the re-
fractive angle r,, and the angle 3, between the axis and
the wave normal of the extraordinary wave, are given.
They are applicable to CAIS [of course, to CAPS as well,
provided the inclined angle of the axis n in Eq. (18)
equals zero] at any incidence and for arbitrary rotation of
the crystal. By applying these solutions together with
Eq. (1), it is now feasible to determine the indices of re-
fraction for the extraordinary wave with experimentally
measurable parameters. As an example of application,
we calculated the indices for calcite and quartz under
some angular parameters and listed than in Table I.

By analogy with Snell’s law for the extraordinary wave,
we have

sin(0) /sin(r,)=n,(r,) .

To identify the sine ratio from the index, n,(r,) for cal-
cite at 0=m/3 is also listed in Table I. Apparently, the
ratio does not equal n,(f3,,). Also, we calculated the ratio
sin(8) /sin(rp) for the extraordinary ray, which also does
not equal the index. Therefore, Snell’s law is generally
not valid for either the extraordinary wave or the ex-
traordinary ray, except when the axis is both parallel to
the surface and perpendicular to the incident plane.

1047

ACKNOWLEDGMENT

The author is grateful to Professor Fengming Xu and
his group in CIOM for their extensive many assistance.

APPENDIX

To work out the coordinates of W(X,,Y,,Z, ), which
define the point of intersection between the extended ex-
traordinary wave normal and the coordinate surface of
point P (see Fig. 2),

X,=X,—d(PW)sin® ,
Y, =Y, +d(PW)cos® ,
Z,=Z,,
the segment PW should be settled as
d (PW)=d (OP)sin(a)/sin(a+~LOPW) ,

with
dXOoP)=X3+Y2+2Z?%,
cos(ZOPW)
=[d*OP)+d*PM)—d*(OM)]/2d (OP)d (PM)
and

d(PM)=X, /sin® ,
dXOM)=Z3+d*(0pM) ,
d(OpM)=Y,+X,/tan® .

To work out 3, with an expression of angular variables
as

cosf3, =sin(r, )Jcosy cos(P+y ) +cos(r, )siny ,
the following equations are necessary:

cosB, =[d*(OW)+dX04")

—d*(A'W)]/2d(OW)d(0A4’) ,

with

d(OW)=Z, /cos(r,) ,

d(OA')=Z, /sinn ,

dX(A'W)=[dX0pW)+d*0pA4’)

—2d(0OpW)]d(Op A’')/cos(®+7v') ,

and

d(OpW)=Z x tan(r,) ,

d(OpA')=2Z, /tann .
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